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Cell cultures provide a unique in vitro model, a tool or a “test tube” system to establish the relationship between 
brush border membrane lipid composition, enterocyte microsomal activities of key lipid metabolizing enzymes, 
the adaptation of intestinal transport, and to identify transcriptional and post-transcriptional events which lead 
to the adaptation of transport. Transfection of cells in culture with cDNA not normally present will permit the 
study of the phenotypic expression of a specific hydrolytic or transport function. Enrichment of the culture 
medium with nutrient modifiers of transport (such as polyamines or fatty acids) will permit better disection of the 
events controlling phenotype expression. In this way, clinical problems of nutrient absorption may be better 
understood and eventually modified in a therapeutically important manner. (J. Nutr. Biochem. 6~240-245, 
1995.) 

Introduction 

The morphology and functions of the intestine are not static 
but are subject to adaptation in a number of situations in 
health and disease, such as in response to starvation/ 
refeeding or a change in diet. i Cultured cell lines have been 
used in studies of intestinal differentiation and function and 
have provided a useful model system to explore many of the 
cellular processes seen in intestinal adaptation.* Primary 
culture of intestinal epithelial cells is not possible beyond 
several days but has been used to study cholesterol uptake.3 
The establishment of stable cell lines in culture is an im- 
portant technique for the maintenance and propagation of 
cells ex vivo in an isolated and defined environment. Cell 
culture systems allow for manipulation of the culture envi- 
ronment, the ability to study complex physiological phe- 
nomena in both differentiated and undifferentiated cells in a 
simplified environment, and the ability to manipulate ge- 
netic makeup in these cells.4 Cell culture systems have 
proven invaluable in the elucidation of the fundamental bio- 
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chemical pathways and regulatory steps involved in the me- 
tabolism of lipids and lipoproteins. The relative ease with 
which subcellular fractions of cultured cells are obtained 
allows for the localization of different lipid pools and the 
intracellular metabolism and targeting of lipids to various 
organelles. It may be difficult to select an appropriate ani- 
mal model that closely resembles characteristics of the 
pathogenesis of disease processes in humans, and this must 
be done with considerable thought and compromise. In the 
future, it is anticipated that the combination of molecular 
biology techniques, experimental systems for the coculture 
of cells, and the availability of cells from humans with 
genetic abnormalities will facilitate the elucidation of the 
molecular defects underlying specific diseases. These sys- 
tems will also provide a framework for the development of 
pharmacological and genetic approaches to cure or to im- 
prove the phenotypic expression in certain human diseases. 

The identification of the signals for and the mechanisms 
of adaptation of intestinal sugar and lipid transport may now 
be examined using cell culture systems.’ The study of cel- 
lular and molecular events associated with intestinal glucose 
transport has been examined in a variety of cultured cell 
lines.6 This has provided model systems to study the adap- 
tive responses to nutrients and other possible signals that 
lead to up- or down-regulation of transport. Some of the cell 
lines that have been used to examine intestinal absorption 
will be discussed. 
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IEC, RIEl, and IRD 98 

Cell lines originating from fetal or postnatal small intestine 
(IEC, RIEl , or IRD 98) have been shown on morphological 
grounds, and on the basis of immunological characteriza- 
tion of cell surface markers, to behave like intestinal crypt 
cells.7~8 Under the influence of mesenchyme, a proportion 
of IEC cells is able to ~fferentiate into absorptive, goblet, 
endocrine, and Paneth cells. Extensive studies of hy~olytic 
or transport function have not yet been reported in this cell 
line. 

HT-29 cells 

The human colon adenocarcinoma cell lines Caco-2 and 
I-IT-29 are able to express typical enterocyte diffe~ntiation. 
These are of interest in studies of regulation of the Na+- 
dependent glucose transporter (SGLT,), the sodium- 
independent fructose transporter (GLUT,) or of lipid ab- 
sorption and metabolism. The first demonstration of the 
capacity for differentiation of HT-29 cells was reported a 
decade ago, with the observation that the substitution of 
galactose for glucose in the culture medium results in the 
emer ence of an enterocyte-like differentiated popula- 

‘lo The cellular e tion. * v e nts associated with diffe~ntiation 
of HT-29 cells have been examined in studies of changes in 
the levels of activity of brush border membrane (BBM) 
markers such as alkaline phosphatase, sucrase-isomaltase, 
aminopeptidase N, and dipeptidylpeptidase IV. Also, HT- 
29 cells are an interesting in vitro model for studying the 
formation and regulation of tight junctions. 

A number of subpopulations and clones have been iso- 
lated from HT-29 cells. Some of these ~pulations are en- 
terocyte-like, others are mucus-secreting, while others form 
domes (a characteristic associated with ion transport prop- 
erties). ‘i Previously, it was assumed that the parental cell 
line was undifferentiated, but this assumption is not entirely 
correct. ‘**i3 For example, antibodies against villin, BBM- 
associated hydrolases, and gastrointestinal mucins have 
been developed and allow for screening of the differentiated 
phenotype. Using such probes, ~stconfluent cultures of 
HT-29 cells do not contain just undiffe~ntiated cells but 
also a small proportion of differentiated cell types. The 
HT-29 cell line, therefore, is a heterogeneous cell line that 
under some culture conditions contains a majority of undif- 
ferentiated or differentiated cells. For example, it is possi- 
ble to obtain the emergence of totally differentiated popu- 
lations b re lacing glucose with galactose in the culture 
m~ium~,i~~6 with glutamine deprivation,‘? by treatment 
of the cell line with sodium butyrate, ‘**ig or with exposure 
of the cells to methotrexate or to 5-fluorouracil.“*~ 3 The 
emergence of differentiated HT-29 cell populations may be 
the result of a process of selection, in which a small pro- 
portion of differentiated cells already present in the parental 
line would also possess an advantage enabling them to cope 
with adverse metabolic conditions or biochemical hazards. 

HT-29 cells form a polarized monolayer with tight junc- 
tions, express hydrolases normally associated with the 
BBM of enterocytes, and actively transport by SGLT, the 
nonmetabolized sugar analog methyl-D-glucoside (AMG) 
in a manner that is inhibited by the replacement of sodium, 

by phlorizin, and by glucose.20 When HT-29 cells are 
grown in culture medium in which glucose is replaced by 
galactose, a greater proportion of differentiated cells appear 
which express active glucose tran~port.*~-*~ I-IT-29 cells 
absorb D-glucose and galactose (as would be expected, 
since like AMG they are transported by SGLT,), as well as 
fructose (Thomson et al., unpublished observations). When 
HT-29 cells are grown in standard culture conditions with 
25 mM glucose and serum, they are undiffe~ntia~d and 
only express facilitating glucose tran~port,*~ and sucrase- 
isomaltase activity is abolished.25 This suggests that I-IT-29 
cells contain both the sodium-dependent BBM transporter 
SGLT, as well as the sodium-independent fructose trans- 
porter GLUT,. The hydrolytic and transport function of the 
HT-29 cells can be modified by changing the composition 
of the culture medium. For example, the expression of the 
protein of the BBM sucrase-isomaltase has been shown to 
be modulated by the presence of glucose in the culture 
medium.25‘27 Similarly, HT-29 cells cultured in late con- 
fluency in a glucose-free medium containing inosine exhibit 
enterocyte differentiation, with the presence of tight junc- 
tions and BBM.“,** Finally, the glucose concentration in 
the culture medium can regulate the expression of SGLT, in 
HT-29 cells through sugar metabolism.2g 

HT-29 cells grown under standard culture conditions 
have high activities of pyruvate kinase, glucose-ii- 
phosphate dehydrogenase, and lactate dehydrogenase. 3o 
Fructose 2,6-diphosphate is an allosteric activator of phos- 
phofructokinase- 1, which likely plays an important role in 
the control of carbohydrate metabolism in these cells. In- 
sulin receptors have been characterized in HT-29 cells and 
are efficient in stimulating cell proliferation3i as well as in 
unrolling the c~bohydra~ me~~lism of these cells.32 
Galactose is poorly metabolized by enterocytes; galactose 
increases the doubling time of colonic carcinoma HT-29 
cells9 while inducing the expression of B-glucosidase, mi- 
crovillus length, dipeptidylpeptidase-IV, alkaline phos- 
phatase , and aminopeptidase N . g*33 

There are distinct Cl-- and mucin-secreting subclones of 
the HT-29 cells that allow assessment in differentiated and 
nondifferentiated cells of a number of enterocyte func- 
tions.34 The mucin-secreting subclone HT-29- 18N2 has 
provided a useful model system to examine the signal trans- 
duction pathways mediating mucin secretion from intestinal 
Goblet cells.14 Cholinergic stimulation of these cells does 
not lead to exocytosis of mucin granules, whereas activation 
of protein kinase C by phorbol myristate acetate (a phorbol 
ester) increases mucin secretion by the exocytic pathway.35 
Similar findings have been observed in the T84 adenocar- 
cinema cell line.36 

Caco-2 cells 
Caco-2 cells undergo typical enterocyte differentiation, 
with the onset of differentiation occurring at confluence. 
This confluence is complete within 20 days, with the es- 
tablishment of a polarized layer with tight junctions, mi- 
crovilli, and BBM enzymes.‘0*22*23 Structural proteins as- 
sociated with the BBM of Caco-2 cells include villin, the 
110 kD polypeptide, and the 140 kD glycoprotein,37,38 to- 
gether with hydrolases normally associated with the entero- 
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cyte BBM. These have been demonstrated by immunoflu- 
orescence, in synthetic labeling studies using sodium do- 
decyl sulfate-polyacrylamide gel electrophoresis (SDS- 
PAGE) and immunoblotting, and by measurement of 
hydrolase activities in cellular extracts. 10722*26,39*40 

The Caco-2 cell line is spontaneously differentiated, and 
the degree of differentiation may be varied by changing the 
duration of culture. lo Caco-2 cells can be stimulated to 
become differentiated to mature villus-like enterocytes by 
adding forskolin to the culture medium, thereby increasing 
adenylate cyclase synthesis, enhancing cytosolic CAMP, 
up-regulating the activity of BBM sucrase-isomaltase (SI) 
and its mRNA, as well as enhancing the expression of the 
BBM fructose transporter protein, GLUT,.41,42 The forsko- 
lin-dependent decrease in SI expression results from a de- 
crease in the rate of transcription of the gene,43 and there is 
a close correlation between the sucrase activities and the SI 
mRNA levels.6 The uptake of biotin is up-regulated by 
growing confluent Caco-2 cells in a biotin-deficient envi- 
ronment ,44 whereas glucose interferes with the expression 
of SI in Caco-2 cells at the mRNA level. 

Lipid uptake and cell cultures 

The intestinal uptake of fatty acids and cholesterol is 
thought to occur by passive diffusion. 1Y45 Recent evidence 
suggests that a fatty acid binding $rotein in the BBM 
(FABP,,,) may contribute to uptake. Also, an amiloride- 
inhibitable carrier-mediated step facilitates fatty acid uptake 
by the exchange of sodium (Na+) for hydrogen (H+). This 
provides for and maintains an acid microclimate adjacent to 
the BBM. This acidic microclimate enhances the release of 
fatty acids for the luminal bile salt micelles as well as in- 
creases their protonation and subsequent permeation of the 
BBM.& Autoradiographic4’ and cell fractionation studies4* 
have suggested that lipid uptake is greater into the differ- 
entiated enterocytes on the upper portion of the villus than 
into the less differentiated cells near the intestinal crypts. 
Caco-2 cells have also been shown to synthesize apoli- 
poproteins ,5 although it is unknown whether forskolin- 
stimulated differentiation alters apolipoprotein synthesis, li- 
poprotein secretion, or lipid uptake. In Caco-2 cells the 
transport of the bile acid cholytaurine across the apical 
BBM occurs by a Naf -dependent process in a manner sim- 
ilar to isolated ileal enterocytes.4g 

Differentiated and undifferentiated HT-29 cells are a 
useful tool to assess the uptake of lipids and the effect of 
altering intracellular CAMP (Thomson et al., unpublished 
observations). 

Sorting and recycling: Membrane 
lipid composition 

The adaptation of lipid uptake occurs in a host of animal 
models, such as in streptozotocin-induced diabetes mellitus, 
after ileal resection, following abdominal irradiation, with 
chronic ingestion of ethanol, or with isocaloric changes of 
dietary lipids. ’ Variations in nutrient uptake are associated 
with changes in the type of pospholipids and their fatty 
acids in the enterocyte BBM. 5 54 These alterations in BBM 

lipids are associated with changes in the activity of key 
enterocyte microsomal lipid metabolizing enzymes, such as 
phosphatidylcholine transferase, phos~idylethanolamine 
methyl transferase, and desaturases. The use of cul- 
tured cells of varying degrees of cellular differentiation will 
permit the careful definition of the appropriate time-course 
studies to determine whether the activities of the enterocyte 
microsomal enzymes precede the alterations in BBM lipid 
composition, and whether altered levels of activity of these 
lipid metabolizing enzymes are associated with increased 
abundance of enzyme protein and of their respective mR- 
NAs. 

Numerous attempts have been made to correlate changes 
in phospholipid patterns with variations in the organization 
and functioning of cellular membranes.‘jl The enterocyte 
BBM has a high sphingomyelin content, whereas the baso- 
lateral membrane (BLM) is enriched in phosphatidylcho- 
line.6245 The relative rate of translocation (and not the 
synthetic step) is the most important factor controlling the 
phospholipid segregation between BBM and BLM in rat 
renal proximal tubular cells. 66 Similar studies have not yet 
been reported on for intestinal tissue. The phospholipid 
composition of the plasma membrane is a function of the 
state of cell differentiation. This suggests that the polarized 
distribution of the phospholipids between the exoplasmic 
and cytoplasmic leaflets of the antipodal domains in epithe- 
lial cells is altered in undifferentiated HT-29 cells but is 
restored in their enterocytic-differentiated counterparts. 
When comparing the differentiated versus the undifferenti- 
ated l-IT-29 plasma membranes, there is an increased sphin- 
gomyelin content, higher ratios of monounsaturated: poly- 
unsaturated fatty acids in phosphatidylethanolamine, and 
concomitant decreases in phosphatidylserine and cardio- 
lipin. 

Sorting and recycling are well known phenomena in in- 
tracellular protein trafficking, occurring during biosynthesis 
and endocytosis.67 The sorting of sphingolipids in the en- 
docytic pathways has been studied in HT-29 cells and oc- 
curs only in undifferentiated cells.68 There is also different 
expression and distribution of other cell surface molecules 
in undifferentiated as compared with differentiated I-IT-29 
cells. 15~16*69-71 This difference between the two cell types 
suggests that lipid sorting phenomena are related to the state 
of cellular differentiation. Thus, these cell culture lines may 
be useful in determining whether BBM transporters are 
transferred directly from the Golgi to the BBM, or whether 
they are transferred indirectly via transcytosis to the BBM 
from the BLM as they establish their polarity during cell 
growth and differentiation. 72 Caco-2 cells use a mixture of 
the direct and transcytotic strategies for dipeptidyl peptidase 
IV and aminopeptidase N to reach their ultimate destina- 
tions. By contrast, the vast majority of newly synthesized 
sucrase-isomaltase is sorted intracellularly and is delivered 
directly to the BBM domain.73 

A’-desaturase is responsible for the conversion of satu- 
rated (160 and 18:0) to monounsaturated (161 and 18:l) 
fatty acids. A6- and A5-desaturases are mainly involved in 
the metabolism of essential fatty acids, i.e., 18:2(6) and 
18:3(3): 74*75 A6-desaturase converts 18:2(6) to 18:3(6) and 
is considered to be a rate-limiting step.76777 18:3(3) is also 
desaturated by the same Abdesaturase, and the presence of 
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18:3(3) in the diet has been shown to inhibit the desaturation 
of l&2(6) and the subs~uent formation of 20:4(6).78 The 
intestinal mucosa possesses desaturase activities55-60 and 
can synthesize significant amounts of 20:4(6) from 18:2(6). 
Feeding diets containing fish oil rich in eicosapentaenoic 
(205[3]) and d~os~exaenoic (22:6[3]) acids inhibits A’- 
and Abdesaturase activities. 5- Dietary cholesterol sup- 
plementation also impairs the desaturation of 18:2(6) and 
decreases 20:4(6) levels in plasma and tissue lipids when 
fed in combination with saturated or omega-6 fatty acids.79 
Glucagon, epinephrine, glucocorticoids, and thyroxine de- 
press while insulin increases the activity of A6-desaturase.80 
Other physiologic changes such as aging and fasting, as 
well as some pathological processes (e.g., diabetes melli- 
tus, chronic zinc deficiency, and chronic alcohol consump- 
tion) have also been associated with reduced A6-desaturase 
activity (80). 

Assessing degrees of differentiation 
Forskolin, an activator of adenylate cyclase,81 influences 
glycogenolysis and glucose consumption” Treatment of 
Caco-2 cells with forskolin inhibits the migration of the 
complex fully glycosylated form of the hydrolases to the 
BBM.Z2 The induction of modifications of glucose utiliza- 
tion (by means of glucose deprivation or by the action of 
drugs which act on glucose me~bolism) may provide useful 
information on the potential role of glucose in the biosyn- 
thesis and glycosylation of the BBM hydrolases as well as 
information on the role of glucose metabolism on the con- 
trol of transport. 

Differentiated cells accumulate 10-20 times more villin 
than do undifferentiated cells, and the total amount of villin 
expressed in differentiated HT-29 cells is close to the value 
observed for normal, freshly isolated colonocytes3* mRNA 
for villin is more abundant in differentiated as compared 
with undifferentiated cells. 82 This suggests that during the 
course of differentiation, the villin gene is more actively 
transcribed, or that mRNA for villin is stabilized. Interest- 
ingly, sucrase-isomaltase expression is highly heteroge- 
neous among differentiating Caco-2 cells, as suggested on 
the basis of in situ immunostaining pattems.83 Further anal- 
ysis of this phenomenon is consistent with the model where 
Caco-2 cells undergo structural and functional differentia- 
tion according to a transient mosaic pattem.84 

Potential limitations to the use of cell cultures 
Differentiated HT-29 and Caco-2 cells cannot be compared 
with the cells of normal colon since they develop the di- 
gestive, absorptive, and morphological characteristics of 
the enterocytes of the small intestine. On the other hand, 
these cell lines are not completely identical with enterocytes 
of the small intestine: for example, lactase is absent from 
HT-29 cells, maltase-glucoamylase is absent from both HT- 
29 and Caco-2 cell lines,39’85 and the ion transport proper- 
ties of I-IT-29r* and Caco-2 cells86i87 are different from 
those observed in the small intestine. In addition, the mo- 
lecular form of sucrase-isomaltase from HT-29 and Caco-2 
cells is different from that found in the adult small intestine 
but is similar to that observed in the fetal colon.25~*5~88 

Notwithstanding the differences between these cell lines 
and enterocytes from the small intestine, HT-29 and Caco-2 
cells are useful for observing the onset of structural and 
molecular events leading to cell polarity and for studying 
the time course of changes in functional parameters of the 
BBM, such as digestion and abso~tion. These cell lines 
will prove to be useful tools for the study of intestinal ad- 
aptation For example, in the intact intestine most uptake 
occurs in the more differentiated cells at the upper third of 
the villus, as compared with the less diffe~ntia~d cells in 
the lower portion of the villus, or in the crypt cells,47 The 
use of cell cultures will provide a unique opportunity to 
study the mechanisms of altered nutrient transport which 
occurs with variations in enterocyte differentiation. 
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